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We propose a spatially chirped quasi-phase-matching (QPM) scheme that enables ultrabroadband second-harmonic-gen-
eration (SHG) by using a fan-out QPM grating to frequency-convert a spatially chirped fundamental wave. A “zero-
dispersion” 4f system maps the spectral contents of ultrabroadband fundamental onto different spatial coordinates in
the Fourier plane, where the fundamental is quasi-monochromatic locally in picosecond duration, fundamentally canceling
high-order phase mismatch. A fan-out QPM grating characterized by a linear variation of the poling period along the trans-
verse direction exactly supports the QPM of the spatially chirped beam. We theoretically demonstrate the SHG of an 810-nm,
12.1-fs pulse into a 405-nm, 10.2-fs pulse with a conversion efficiency of 77%.
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1. Introduction

There are growing demands for ultrashort lasers (with duration
down to few-optical-cycle) in wavelength regimes that are not
available by direct laser action[1,2]. Nonlinear frequency conver-
sions, e.g., second-harmonic generation (SHG), difference-fre-
quency generation (DFG), optical parametric generation/
amplification (OPG/OPA), have been widely adopted to fill
the wavelength gaps[3-5]. Efficient frequency conversion neces-
sitates phase matching between interacting waves. In SHG, for
example, if the phase-matching condition is not fulfilled, the sec-
ond-harmonic waves generated at different positions in a crystal
are out of phase—hence, destructively interfere[6]. Angular
phase matching in birefringent crystals has been widely used,
where polarization and propagation directions (θ) of interacting
waves are arranged to achieveΔk = 0 at a specific wavelength[7].
Broadband SHG, however, necessitates not only the first-order
phase matching (i.e., Δk = 0), but also the second-order match-
ing (i.e., ∂Δk=∂ω = 0, known as group-velocity matching) and
even higher-order matching. The spectrally noncritical phase-
matching solution, i.e., the solution for simultaneous first- and
second-order phase matching, exists only at a specific wave-
length for a certain crystal[8], such as 1.5 μm for BBO[9], 1.3 μm
for LBO[10], 1.55 μm for MgO-doped PPLN[11], and 1 μm for

partially deuterated KDP[12]. To frequency-double ultrashort
lasers at other wavelengths, thin nonlinear crystals of the order
of hundreds of micrometers or less[13] are used to reduce the
impact of phase mismatch, at the cost of low conversion effi-
ciency (∼20%) and limited pulse energy.
To remove the requirement of thin crystal, the phase mis-

match should be compensated for completely in its nature of
spatiotemporal coupling. The phase mismatch between the
interacting waves in birefringent crystals, in essence, exhibits
an interdependence of both the laser frequency (ω) and the
wave-vector direction (θ). Hence, the phase mismatch is spatio-
temporally coupled, which should be written asΔk�ω, θ�. In this
sense, the ability to manipulate the ultrashort pulses’ spatiotem-
poral couplings should be used as a new degree of freedom to fit
in the spatiotemporally coupled phase-matching condition
Δk�ω, θ� and achieve ideal broadband frequency conversion.
Achromatic phase matching (APM)[14–16] was proposed,
accordingly, wherein the broadband fundamental is angularly
dispersed such that each frequency component is injected into
the nonlinear crystal along its individual phase-matching angle.
However, the desired angular dispersion (one kind of spatiotem-
poral couplings) to compensate for Δk�ω, θ� is typically in the
range of 10−4 rad=nm. To introduce such an angular dispersion
into the fundamental pulse, diffraction gratings having a groove
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density as low as ∼100 lines=mm were typically used[17], at the
cost of low diffraction efficiency (< 80%). To reduce the energy
loss in the low-density diffraction gratings, Baum et al. proposed
an achromatic SHG scheme wherein the angular dispersion was
introduced by a pair of prisms in combination with a focusing
lens[14]. However, the prism pair can hardly be used for the SHG
of super-powerful ultrashort lasers in a large aperture. Besides,
even in the scheme of APM, thin nonlinear crystals are still nec-
essary; otherwise the angularly dispersed ultrashort pulse will
quickly spread out in space and time.
In this paper, we present a different strategy to achieve spa-

tiotemporally-coupled phase matching, which no longer neces-
sitates low-density diffraction gratings or thin nonlinear crystals.
To break this limit of the APM scheme where the phase-match-
ing condition exhibits angular dispersion due to the nature of
birefringence, we use a quasi-phase matching (QPM) crystal
in a fan-out grating structure, wherein the phase-matching con-
dition exhibits the spatiotemporal coupling characteristic of spa-
tial chirp Δk�ω, x�, rather than angular dispersion Δk�ω, θ�. As
schematically illustrated in Fig. 1(a), QPM crystal in a fan-out
design is characterized by a linear variation of poling period
along the transverse direction[18]. Accordingly, the QPM wave-
length varies along the transverse direction. By transforming an
ultrashort fundamental pulse into a spatially chirped beam
wherein the broadband spectrum is distributed “slice by slice”
onto the QPM crystal with an appropriate poling period indi-
vidually [Fig. 1(b)], ultrabroadband SHG can be achieved with
high efficiency. Particularly, within each transverse slice of the
fan-out QPM crystal, the fundamental wave is quasi-narrow-
band, which fundamentally cancels high-order phase mismatch,
so that thick nonlinear crystals can be used.

2. Principle of Spatially Chirped QPM

The engineerable period of a QPM grating structure provides a
new degree of freedom to optimize phase matching. Figure 1(b)

presents the basic layout for ultrabroadband SHG based on a
periodically poled lithium niobate (PPLN) in a fan-out grating
structure. A 4f optical setup is adopted to spatially disperse the
incident 1ω wave. The frequency components of 1ω wave are
angularly dispersed by G, and then focused by M1 to a diffrac-
tion-limited line beam at the Fourier plane (i.e., the back focal
plane of M1). The fan-out PPLN is placed at the Fourier plane.
It is worth noting that the 4f system in our scheme is quite differ-
ent from those used in pulse shaping or those in frequency-
domain optical parametric amplification (FOPA)[19], wherein
the signal wavelength stays the same. In our scheme, however,
the aiming output (2ω) has a different wavelength from the
input (1ω). Therefore, it necessitates a precise arrangement of
the 4f system parameters to deliver a collimated 2ω output with-
out or with least spatiotemporal coupling distortions.
We first deduce the spatiotemporal evolution of the 1ω and

2ω fields under the assumption of prefect phase matching. A
spatiotemporal Gaussian-shaped 1ω pulse with a beam width
of D and a Fourier-transform-limited duration of τ0 is assumed,
whose complex amplitude in the spatial-spectral domain can be
written as

ain1ω�x,ω� = a0 exp

�
−

x2

2D2

�
exp

�
−

ω2

2�Δω�2
�
, (1)

where Δω�=1=τ0� denotes the frequency width. We only con-
sider one transverse coordinate, x, because the spatial depend-
ence of the electric field on the other transverse spatial
coordinate y is uninvolved in any kind of spatiotemporal cou-
plings, so that it has less impact onto the spatiotemporal phase
matching and thus conversion bandwidth of SHG, and its
impact on the conversion efficiency can be estimated separately
as a�x, y,ω� = a�x,ω�ay�y�. All the mentioned widths refer to
the half-width at 1=e intensity. After being diffracted by G1,
the 1ω laser becomes an angularly dispersed beam as given by

aG1
1ω�x,ω� = a0 exp

�
−

x2

2D2

�
exp

�
−

ω2

2�Δω�2
�
exp�ik1β1ωx�,

(2)

where β1 is the angular dispersion provided by G1. In the Fourier
plane, the 1ω laser thus evolves into a spatially chirped beam as
given by

aFP1ω�x,ω� = a1 exp

�
−
ik1
2f

x2
�
exp

�
−
ik1β21ω

2f
2

�

× exp

�
−

ω2

2�Δω�2
�
exp�−ik1β1ωx�

× exp

�
−
�x� β1fω�2

2σ2

�
, (3)

where k1 is the wavenumber, f is the focal length of M1, and σ =
f =�k1D� is the focal spot size for each monochromatic compo-
nent. As indicated by the term exp�−�x� β1fω�2=2σ2�, different
frequency components (ω) are focused onto distinct transverse

Fig. 1. (a) Exaggerated view of a fan-out QPM grating; (b) schematic setup of
broadband SHG in spatially chirped QPM, which consists of two diffraction gra-
tings (G1, G2) and two concave mirrors (M1, M2) arranged in a zero-dispersion 4f
configuration; f is the focal length of the concave mirrors.
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positions (x = −β1fω). The spatial separation of the frequency
components can be described by the spatial-chirp coefficient
defined as

ζ1 =
dx
dω

= −β1f : (4)

According to Eq. (3), the local bandwidth of the spatially
chirped 1ω wave can be deduced as

ΔωFP
1 =

σ

jζ1j
= −

1
k1β1D

= −
Δθ1ω
β1

, (5)

which is an important parameter that determines the SHG per-
formance at each transverse position. Equation (5) indicates that
the local bandwidth is determined only by the divergence angle
of the incident 1ω beam Δθ1ω = 1=�k1D� and the angular
dispersion β1 provided by the diffraction grating G1 and is unre-
lated to the total bandwidth of the incident 1ω beam. In practice,
such a local bandwidth can be reduced by expanding the inci-
dent beam width D and/or by adopting a higher groove-density
grating. The spatiotemporal amplitude of the fundamental wave
can be deduced via Fourier transformation[20],

AFP
1ω�x, t�

= A1 exp

�
−

x2

2�ζ1Δω�2
�
exp

�
−

t2

2�k1β1D�2
�
exp

�
−ixt
ζ1

�
, (6)

where the term exp�−ixt=ζ1�manifests the spatiotemporal cou-
pling in the form of wavefront rotation. Equation (6) indicates
that the fundamental wave in the Fourier plane does not exhibit
pulse-front tilt (i.e., a transverse-position-dependent arrival
time), and the temporal duration is uniformly ΔT = −k1β1D
across the beam[20]. For a monochromatic beam incident into
G1, this durationΔT = −k1β1D corresponds to the overall delay
resulting from the different arrival times (at the Fourier plane) of
different spatial slices of the incident beam. For an ultrashort
Fourier-transform-limited beam, this duration ΔT = −k1β1D
is exactly the Fourier-transform-limited duration determined
by the local bandwidth [Eq. (5)] after spatial dispersion, as
ΔT · ΔωFP

1 = 1.
Under the assumption of perfect phase matching, the spatial-

spectral amplitude of the 2ω laser produced in the Fourier plane
can be directly written as

aFP2ω�x,ω� = a2 exp

�
−
ik2
2f

x2
�
exp

�
−
ik2β22�2ω�2f

2

�

× exp

�
−

ω2

4�Δω�2
�
exp�−ik2β2�2ω�x�

× exp

�
−
�x� β2f �2ω��2

σ2

�
, (7)

where k2�=2k1� is the wavenumber of the 2ω beam, and β2 =
β1=2 is the angular dispersion coefficient of the 2ω beam. M2,
with the same focal length as M1, is then used to perform an

inverse Fourier transform in the spatial domain and restore
the spatially chirped 2ω beam into an angularly dispersed beam
without spatial chirp at the back focal plane of M2, where the
complex amplitude of the 2ω field can be deduced as

aG2
2ω�x,ω� = a3 exp

�
−
x2

D2

�
exp

�
−

ω2

4�Δω�2
�
exp�−i2k2β2ω�:

(8)

A comparison of Eq. (8) with Eq. (2) indicates that a colli-
mated and distortion-free SHG output can be obtained if we
adopt a diffraction grating G2 with the half-angular dispersion
coefficient of G1 (i.e., β2 = β1=2). In practice, we can use a dif-
fraction grating that has a double groove density of G1 for G2.
After removing the angular dispersion by G2, the 2ω field
translates into an ultrashort pulse without spatiotemporal
couplings as

aout2ω �x,ω� = a3 exp

�
−
x2

D2

�
exp

�
−

ω2

4�Δω�2
�
: (9)

We next present a design of a 4f system for the SHG of a
broadband 1ω laser centered at 810 nm with a full width
at half-maximum (FWHM) bandwidth of 50 nm (correspond-
ing toΔω = 144 THz in half-width at 1/e intensity). G1 adopts a
diffraction grating with a groove density of 1200 lines/mm,
which provides an angular dispersion coefficient of β1 =
−0.478mrad=THz for the 1ω laser [Fig. 2(a)]. And the second
diffraction grating G2, with a groove density of 2400 lines/mm,
provides an angular dispersion of β2 = −0.239mrad=THz for
the 2ω laser centered at 405 nm. The two concave mirrors

Fig. 2. (a) Spatial-spectral and (b) spatiotemporal intensity profiles of the 1ω
laser in the Fourier-plane; (c) spatial-spectral and (d) spatiotemporal intensity
profiles of the 2ω laser in the Fourier-plane calculated under the assumption
of perfect phase matching.
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M1 and M2 have the same focal length of f = 100mm. The inci-
dent 1ω pulse is assumed to be a Fourier-transform-limited one
in Gaussian shape, with τ0 = 12.1 fs in duration andD = 0.5mm
in beam width. At the back focal plane of the concave mirror M1

(i.e., the Fourier plane), the frequency components are dispersed
in space sufficiently. In consequence, the local bandwidth is as
narrow as 0.22 nm, corresponding to a pulse duration of ∼3.1 ps
[Fig. 2(b)]. The 1ω laser is featured by a spatial-chirp coefficient
of dx=dω = 4.78 × 10−2 mm=THz. Assuming a perfect phase
matching, a spatially chirped 2ω beam is produced, character-
ized by a spatial-chirp coefficient of dx=dω = 2.39 ×
10−2 mm=THz [Fig. 2(c)] and a pulse duration of ∼2.2 ps
[Fig. 2(d)].

3. Frequency Doubling of a Spatially Chirped Beam in
a Fan-Out PPLN

The combination of a fan-out PPLN and a spatially chirped fun-
damental provides the possibility of ultrabroadband SHG. Two
key factors need to be considered deliberately. The first one is the
match between the local bandwidth of the 1ω beam and the
acceptance bandwidth of the QPM crystal at each transverse
position. The second one is the match between the spatial-chirp
coefficient of the fundamental and the period gradient of the
fan-out grating.
QPM is characterized by a periodic reversal of the sign of the

nonlinear coefficient to offset the accumulated phase mismatch
by the material dispersion. For a PPLN in fan-out design, the
varying poling period Λ�x� leads to a space-dependent phase
mismatch as given by

ΔkQ�x, λ� = k2�x, λ=2� − 2k1�x, λ� −
2π
Λ�x� : (10)

With such a phase mismatch, the process of spatially chirped
QPM can be numerically simulated by solving the nonlinear
coupled-wave equations under the slowly varying amplitude
approximation,

∂A2ω

∂z
�

X3
n=1

�−i�n−1
n!

k�n�
∂A2ω

∂t
= −i

ω2deff
n2cπ

A2
1ωe

iΔkQ�x�z , (11a)

∂A1ω

∂z
�

X3
n=1

�−i�n−1
n!

k�n�
∂A1ω

∂t
= −i

2ω1�x�deff
n1cπ

A
�
1ωA2ωe−iΔkQ�x�z ,

(11b)

where A1ω and A2ω refer to the spatiotemporal complex ampli-
tude of the spatially chirped 1ω and 2ω laser, respectively. ω1�x�
and ω2�x� denote their respective space-dependent frequency.
n1 and n2 are their respective refractive indices. deff is the effec-
tive nonlinear coefficient, and c is the speed of light in vacuum.
The first term on the left-hand side of Eq. (11) describes the
propagation of the 1ω (2ω) pulse envelope along the z direction.
The second term describes the dispersion of the 1ω (2ω) pulse

inside the QPM crystal, up to the third order. The term on the
right-hand side describes the coupling between the 1ω and 2ω
components. In the following simulations, a 5% MgO-doped
PPLN in type-0 SHG (eee) configuration is assumed, so that
deff = d33 = 28.4 pm=V in Eq. (11)[21].
First, to cover a spectral range from 760 nm �λmin� to

860 nm �λmax�, the poling period range of the fan-out PPLN
can be calculated as Λmin = 2.33 μm and Λmax = 3.32 μm,
according to the relation,

Λmax =
2π

k2
�
x, λmax

2

	
− 2k1�x, λmax�

, (12a)

Λmin =
2π

k2
�
x, λmin

2

	
− 2k1�x, λmin�

: (12b)

Second, to cover the local bandwidth (0.22 nm in our simu-
lated case) of the spatially chirped 1ω laser at each position x, the
length of the fan-out PPLN should be properly designed to
provide an acceptance bandwidth that is wider than the local
bandwidth of 1ω laser [Eq. (5)]. Under the assumptions of
dispersion-free and pump nondepletion (∂A1ω=∂z = 0), Eq. (11)
has an approximate analytical solution as given by

I2ω�x, L� =
32L2d2eff
n21n2λ

2
2cε0

I21ω sinc
2

�
ΔkQ�0, λ�L

2

�
: (13)

L is the crystal length, and ε0 is the vacuum permittivity. From
Eq. (13), the local acceptance bandwidth Δλlocal can thus be
deduced as

jΔkQ�λ0 ± Δλlocal�Lj = 2π: (14)

Taking the central frequency component, for example, the
QPM grating period can be calculated as Λ0 = 2.81 μm. A
PPLN length of L = 1mm leads to a local acceptance bandwidth
of Δλlocal = 0.26 nm [Fig. 3(a)], which is larger than the local
bandwidth (0.22 nm) of the spatially chirped 1ω beam.
Third, we move to calculate the poling period gradient of the

1 mm-long fan-out PPLN. To match the frequency gradient of
the spatially chirped 1ω beam [Eq. (4)] along the x axis,

ω1�x� = ω0 −
x
β1f

, (15)

the poling period gradient of the fan-out PPLN can be
obtained as

Λopt�x� =
2π

k2 − 2k1
=

πc
�n2 − n1�ω0

×
1

1 − x
β1fω0

: (16)

Obviously,Λopt�x� is not a strictly linear function of the trans-
verse position x. The global beam width of the spatially chirped
1ω beam is β1fΔω, where Δω is the fundamental bandwidth.
Since Δω is typically much smaller than the central frequency
ω0, Eq. (16) can be approximated by Taylor expansion to the
first order,
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Λ�x� ≈ πc
�n20 − n10�ω0

×
�
1� x

β1fω0

�
, (17)

where n10 and n20 stand for the refractive indices at the central
frequencies of the fundamental and second harmonic, respec-
tively. The red line in Fig. 3(b) plots the result of such a linear
approximation, which shows a very good agreement with the
solution of Eq. (16) as depicted by the black line.
Another important parameter for a fan-out PPLN is the tilt

angle of domain walls. As shown in Fig. 1(a), in a fan-out pat-
tern, domain walls tilt away from the x axis progressively toward
the end of the crystal. The tilt angle of the outmost domain wall
is determined as

θtilt = arctan

�
Nv�Λmax − Λmin�
2�xmax − xmin�

�
, (18)

wherein xmin and xmax denote the transverse positions of the
minimum (λmin) and maximum (λmax) wavelengths, respec-
tively.Nν is the number of domains. To avoid the risk of adjacent
domains running together in fabrication, the tilt angles of
domain walls are typically required to be no larger than 2°[18].
In our simulated case, there have been xmin = −7.31mm
and Λmin = 2.33 μm for λmin = 760 nm at one edge, and xmax =
6.47mm and Λmax = 3.32 μm for λmax = 860 nm at the other
edge; the tilt angle is calculated to be 0.93°, well within the
acceptable level.

Fig. 4. (a) Characterization of the spectral amplitude modulation arising from broadband frequency conversion using a multi-period PPLN; (b) second-harmonic
spectra output from the PPLNs with the poling periods ofΛ1 = 2.80 μm (magenta),Λ2 = 2.81 μm (blue), andΛ3 = 2.82 μm (green), respectively; (c) second-harmonic
spectrum output from a multi-period PPLN with gratings of the three different periods calculated in (b).

Fig. 3. (a) Local acceptance bandwidth of a 1 mm-long PPLN with a poling period ofΛ0 = 2.81 μm; (b) optimum space-dependent poling period to match the spatial
chirp of the 1ω beam (black line), in comparison with its linear approximation (red line).
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In spatially chirped QPM, the ultrabroadband 1ω input gets
frequency-doubled slice by slice at different transverse positions.
The 2ω output can be regarded as the superposition of different
spectral slices. The spatial overlap of the adjacent spectral slices
withminor frequency shift will lead to amplitudemodulations in
both the spatial and spectral profiles of the spatially chirped 2ω
beam at the output of the fan-out PPLN. For comparison, we
numerically simulate the process of SHG in a multi-period
PPLN, as shown in Fig. 4(a), which can be regarded as the proto-
type of a fan-out PPLN. The simulations are conducted for a
fundamental without spatiotemporal couplings of 5 nm in band-
width centered at 810 nm and 1 mm-long PPLN with three gra-
ting periods Λ1 = 2.80 μm, Λ2 = 2.81 μm, and Λ3 = 2.82 μm.
Figure 4(b) shows the second-harmonic spectra produced by
each PPLN section, which clearly show that the spectra pro-
duced by the adjacent PPLN of different periods overlap with
each other. Figure 4(c) depicts the 2ω spectrum produced by
the multigrating PPLN with these three poling periods. It shows
that the spatial overlap of the three individual spectra produced
by each grating results in spectral amplitude modulation.
We next move to characterize the performance of spatially

chirped QPM in the saturation regime, where Eq. (13) is invalid.

We numerically simulate the SHG process based on Eq. (11),
wherein the fundamental depletion as well as media dispersion
is all included. For operation around saturation the 1ω pulse
incident onto G1 is assumed to have an initial intensity of
10GW=cm2. After spatial dispersion, the spatially chirped fun-
damental in the Fourier plane has an intensity of 70MW=cm2.
Under such an intensity, the SHG conversion efficiency reaches
the maximum (77%) with a crystal length of 1 mm, as shown
in Fig. 5(a). To assess the SHG efficiency of the whole system,
the optical loss induced by the diffraction gratings and concave
mirrors must be taken into account. Given the ultrabroadband
characteristic of the fundamental and second-harmonic waves,
gold-coated gratings and concave mirrors should be used, which
have a typical reflectivity of ∼95% for each piece, so that the
overall SHG efficiency is about 77% × �95%�4 ≈ 62%.
Figures 5(b)–5(d) present the spectral, temporal, and spatial

profiles of the 2ω pulse right behind the fan-out PPLN, while
Figs. 5(e)–5(g) illustrate the 2ω pulse profiles at the output of
G2. A spatially chirped 2ω pulse has been produced [Fig. 5(b)],
which exhibits obvious amplitude modulations in both the spec-
tral [Fig. 5(b)] and spatial profiles [Fig. 5(d)]. Such amplitude
modulations are induced by the local spectral clipping due to

Fig. 5. (a) Conversion efficiency curve calculated for the broadband SHG in a spatially chirped QPM; (b), (c), (d) spectral, temporal, and spatial intensity profiles of
the 2ω pulse right at the output plane of the fan-out PPLN; (e), (f), (g) spectral, temporal, and spatial profiles of the 2ω pulse right at the output of the second
diffraction grating, G2.
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the local acceptance band and the spatial overlap of the clipped
spectra produced by adjacent x positions, as has been illustrated
in Fig. 4. The modulation depth in the spectrum is as low as
0.05%. The 2ω pulse covers a spectral range from 370 to
440 nm [Fig. 5(b)], indicating that broadband SHG of the fun-
damental from 760 to 860 nm is realized. In time domain, defor-
mation is observed in the 2ω pulse [Fig. 5(c)], which is caused by
the temporal walk-off between the 1ω and 2ω pulses in the
PPLN. At the output of G2, the 2ω pulse resorts to an ultrashort
one with negligible spatiotemporal couplings [inset in Fig. 5(e)],
and the pulse duration is 10.2 fs [Fig. 5(f)], which is about seven
optical cycles. In the spatial profile, sidelobes appear in the out-
put 2ω beam, as shown in the inset of Fig. 5(g), which originates
from the spatial amplitude modulation imprinted onto the 2ω
beam in the Fourier plane due to spatial-spectral coupling.
Nevertheless, more than 96% energy is concentrated in the main
beam spot.
Finally, we move to analyze the upper limit of the conversion

bandwidth of our proposed scheme. Since Λopt�x� as given by
Eq. (16) is not a strictly linear function of the transverse position
x, the compatibility of the fan-out PPLN and the spatially
chirped 1ω wave is bound to deteriorate with the increase of
the fundamental bandwidth. Figure 6(a) depicts the deviation
of the local poling period Λ�x� from the optimum poling period
Λopt�x�, and the frequency-dependent phase mismatch induced
by this deviation is calculated and shown by the red line in
Fig. 6(b). Due to the large phase mismatch experienced by the
edge wavelength components, especially at the end of the short
wavelength, the maximum wavelength range of the second-
harmonic wave is 347–500 nm, as plotted by the black line in
Fig. 6(b). Such a spectral range supports the production of a sec-
ond-harmonic pulse centered at 405 nm with a Fourier-trans-
form-limited duration of ∼4.2 fs (full width at 1=e2 intensity),
as illustrated in Fig. 6(c).

4. Conclusions

In conclusion, we theoretically demonstrate the scheme of spa-
tially chirped QPM as well as its application in the production of

a 10 fs (∼7 optical cycles) 2ω pulse centered at 405 nm via broad-
band SHGwith a conversion efficiency as high as 77%. The con-
version efficiency and bandwidth rely on the match between the
frequency gradient of the spatially chirped beam and the
poling period gradient of the fan-out QPM grating, as well as
the match between the local bandwidth of the spatially chirped
beam and the acceptance bandwidth of QPM. For the spatially
chirped fundamental, its frequency gradient and local band-
width are primarily determined by the angular dispersion ability
of the first diffraction gratings used in the zero-dispersion 4f
optical system and the diffraction divergence angle of the
incident fundamental. The design principles as well as the
quantitative formula for the 4f optical system and the space-
dependent poling period of the fan-out QPM grating are
presented. The spatiotemporal distortions of the second-
harmonic wave induced by the space-dependent spectral
reshaping in the Fourier plane are also investigated, which shows
that the ultrabroadband second-harmonic wave produced by a
fan-out QPM grating is accompanied by spectral amplitude
modulation with a modulation depth as tiny as 0.05%. Due to
the spatial-spectral coupling in the Fourier plane, such spectral
modulation only induces the production of weak sidelobes
in the second-harmonic beam output from the 4f optical system,
while it does not degrade the temporal compression of the sec-
ond-harmonic pulse. Further research shows that the theoretical
limit of the conversion bandwidth for our proposed scheme is
approximately 150 nm in the second-harmonic wave, which
supports the production of a 4.2 fs, 2ω pulse centered at
405 nm. Such an ultrabroadband high-efficiency SHG scheme
has important application for the generation of few-optical-
cycle ultrashort lasers in the visible and ultraviolet spectral
regions.
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Fig. 6. (a) Optimum space-dependent poling periodΛopt (black line) calculated for the spatially chirped 1ω wave according to Eq. (16), in comparison with the local
poling periodΛ (red line) of the fan-out PPLN; (b) spectral intensity (black line) and wavelength-dependent phase mismatch (red line) of the 2ω pulse; (c) temporal
intensity of the 2ω pulse corresponding to the 2ω spectrum shown in (b).
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